PRESS RELEASE

Global Communication Semiconductors, LLC (GCS) Announces Two InGaP HBT Foundry Processes to Address the VCO for Point-to-Point and 12V PA for Small Cell PA Infrastructure Markets

May 20, 2013, TORRANCE, CALIFORNIA - Global Communication Semiconductors, LLC. (GCS), a pure-play III-V compound semiconductor wafer foundry announced today that its proprietary InGaP HBT D5 and P7 foundry processes will now be offered to address the wide tuning range VCO and the 12V PA requirements.

“The D5 InGaP HBT process offers an advantage of a wider (2x) frequency tuning range, in addition to maintaining the super low phase noise performance offered by our already successful D1 VCO process”, commented Brian Ann, Chief Executive Officer of GCS. “P7 InGaP HBT process, with a BVceo of 28v, was developed to address the small cell base station infrastructure PA requirement of 12V operation. The process can be used to develop linear PA with an output power of 1, 2, 4, 8, 10W, etc. As an example, a 2W PA has demonstrated a power density of 0.917mW/um² with a power added efficiency of >65%. These two new processes expand our InGaP HBT process portfolio to a total of seven processes which are sufficient to address any wireless infrastructure PA and VCO requirements”, continued Brian Ann.

GCS will exhibit at the IMS 2013 in Seattle, Washington June 4-6. Latest data sheets and product information will be available at GCS booth #1941.

About Global Communication Semiconductors

GCS is an ISO 9001:2008 certified premier pure-play Compound Semiconductor foundry conveniently located 15 miles south of Los Angeles International Airport. GCS’ business goal is to supply high performance, high quality, specialty semiconductor devices, integrated circuits and solutions to the wireless, telecommunications and fiber optical communications markets. To learn more about GCS, please visit http://www.gcsincorp.com/

Contact For GCS:

Wing Yau, GCS, LLC.
VP, Foundry Services and Applications Engineering
+1 310 530 7274, x107
wyau@gcsincorp.com